The proliferation of resourceful mobile devices that store rich, multidimensional and privacy-sensitive user data motivate the design of federated learning (FL), a machine-learning (ML) paradigm that enables mobile devices to produce an ML model without sharing their data. However, the majority of the existing FL frameworks rely on centralized entities. In this work, we introduce IPLS, a fully decentralized federated learning framework that is partially based on the interplanetary file system (IPFS). By using IPLS and connecting into the corresponding private IPFS network, any party can initiate the training process of an ML model or join an ongoing training process that has already been started by another party. IPLS scales with the number of participants, is robust against intermittent connectivity and dynamic participant departures/arrivals, requires minimal resources, and guarantees that the accuracy of the trained model quickly converges to that of a centralized FL framework with an accuracy drop of less than one per thousand.


翻译:储存丰富、多维和对隐私敏感的用户数据的资源丰富的移动设备激增,促使设计联合学习(FL),这是一种机器学习(ML)模式,使移动设备能够在不分享数据的情况下生成ML模型,然而,现有的FL框架大多依赖集中实体。在这项工作中,我们引入了完全分散的IPLS,即部分基于行星间文件系统的完全分散的联结学习框架。通过使用IPLS和连接相应的私人GIS网络,任何一方都可以启动ML模型的培训进程,或者加入另一个缔约方已经启动的正在进行的培训进程。IPLS与参与者人数相比,具有很强的比重,可以防止间歇性连接和动态参与者离开/抵达,需要最低限度的资源,并保证所培训模型的准确性能很快与中央FL框架的精确率一致,每千人下降不到1。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
112+阅读 · 2020年11月16日
专知会员服务
124+阅读 · 2020年8月7日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年3月3日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
112+阅读 · 2020年11月16日
专知会员服务
124+阅读 · 2020年8月7日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员