We study a novel multi-terminal source coding setup motivated by the biclustering problem. Two separate encoders observe two i.i.d. sequences $X^n$ and $Y^n$, respectively. The goal is to find rate-limited encodings $f(x^n)$ and $g(z^n)$ that maximize the mutual information $I(f(X^n); g(Y^n))/n$. We discuss connections of this problem with hypothesis testing against independence, pattern recognition, and the information bottleneck method. Improving previous cardinality bounds for the inner and outer bounds allows us to thoroughly study the special case of a binary symmetric source and to quantify the gap between the inner and the outer bound in this special case. Furthermore, we investigate a multiple description (MD) extension of the Chief Operating Officer (CEO) problem with mutual information constraint. Surprisingly, this MD-CEO problem permits a tight single-letter characterization of the achievable region.


翻译:我们研究了一种由两组问题驱动的新颖的多端源代码设置。两个单独的编码器分别对两个(一.d)序列($X ⁇ n美元和$Y ⁇ n美元)进行观察,目的是找到限制费率的编码($f(x ⁇ n)美元和$g(z ⁇ n)美元,使相互信息最大化 $I(f(X ⁇ n);g(Y ⁇ n))/n美元。我们讨论了这一问题与独立、模式识别和信息瓶颈方法的假设测试之间的联系。改进以前的内外部界限基点界限,使我们能够彻底研究二进制对称源的特殊案例,并量化这一特殊案例中内外部界限之间的差距。此外,我们调查首席业务干事(CEO)问题的多重描述(MD)延伸,同时对相互信息进行限制。令人惊讶的是,MD-CEO问题允许对可实现的区域进行严格的单字母定性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
15+阅读 · 2021年5月21日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Measure Estimation in the Barycentric Coding Model
Arxiv
0+阅读 · 2022年1月28日
A Graph Auto-Encoder for Attributed Network Embedding
Arxiv
3+阅读 · 2017年12月1日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员