Change detection (CD) aims to detect change regions within an image pair captured at different times, playing a significant role in diverse real-world applications. Nevertheless, most of the existing works focus on designing advanced network architectures to map the feature difference to the final change map while ignoring the influence of the quality of the feature difference. In this paper, we study the CD from a different perspective, i.e., how to optimize the feature difference to highlight changes and suppress unchanged regions, and propose a novel module denoted as iterative difference-enhanced transformers (IDET). IDET contains three transformers: two transformers for extracting the long-range information of the two images and one transformer for enhancing the feature difference. In contrast to the previous transformers, the third transformer takes the outputs of the first two transformers to guide the enhancement of the feature difference iteratively. To achieve more effective refinement, we further propose the multi-scale IDET-based change detection that uses multi-scale representations of the images for multiple feature difference refinements and proposes a coarse-to-fine fusion strategy to combine all refinements. Our final CD method outperforms seven state-of-the-art methods on six large-scale datasets under diverse application scenarios, which demonstrates the importance of feature difference enhancements and the effectiveness of IDET.
翻译:变化探测(CD)的目的是在不同时间拍摄的图像配对中检测变化区域,在不同现实应用中发挥重要作用,然而,大多数现有作品侧重于设计先进的网络结构,以绘制与最终变化图的特征差异,同时忽视特征差异质量的影响。在本文中,我们从不同的角度研究CD,即如何优化特征差异以突出变化并抑制未改变的区域,并提议一个新颖模块,以迭代差异增强变压器(IDET)为标志。IDET包含三个变压器:两个变压器,用于提取两个图像的远程信息,一个变压器用于增强特征差异。与以前的变压器不同,第三个变压器采用前两个变压器的产出,以指导特征差异的增强。为了实现更有效的改进,我们进一步提议以多尺度的IDET为基础的变化探测仪,利用图像的多尺度显示差异变压器进行改进,并提议一个可分到宽置的变压器组合战略,以综合所有改进功能差异。与以前的变压器相比,第三个变压器采用前两个变换器的输出前两个变换器,用以指导特征变换功能差异的模型的多重变换模型,在六级模型下显示模型的模型的模型的模型的模型的模型的模型的模型模型模型模型的模型的模型。