We investigate the computational complexity of deciding whether a given univariate integer polynomial p(x) has a factor q(x) satisfying specific additional constraints. When the only constraint imposed on q(x) is to have a degree smaller than the degree of p(x) and greater than zero, the problem is equivalent to testing the irreducibility of p(x) and then it is solvable in polynomial time. We prove that deciding whether a given monic univariate integer polynomial has factors satisfying additional properties may lead to NP-complete problems in the strong sense. In particular, given any constant value k in Z, we prove that it is NP-complete in the strong sense to detect the existence of a factor that returns a prescribed value when evaluated at x=k or to detect the existence of a pair of factors - whose product is equal to the original polynomial - that return the same value when evaluated at x=k.
翻译:我们调查了确定给定的单一等整数多面体 p (x) 是否具有满足特定额外限制的因子 q(x) 的计算复杂性。 当对 q(x) 的唯一限制是小于 p(x) 的程度和大于 0 时, 问题就相当于测试 p(x) 不可复制性, 然后在多元时间里是可溶的。 我们证明, 决定给定的单一等整数多面体是否满足额外特性的因素可能导致强烈的NP- 完整的问题。 特别是考虑到 Z 中的任何恒定值 k, 我们证明, 检测一个在 x=k 点评价时返回指定值的因子的存在, 或者检测一对因素的存在――其产品等于原始的多元性- 当在 x=k 评估时返回相同值的一对因子的存在, 从强烈意义上说, 我们证明它是 NP- 完整的。