We propose a novel scheme for efficient Dirac mixture modeling of distributions on unit hyperspheres. A so-called hyperspherical localized cumulative distribution (HLCD) is introduced as a local and smooth characterization of the underlying continuous density in hyperspherical domains. Based on HLCD, a manifold-adapted modification of the Cram\'er-von Mises distance (HCvMD) is established to measure the statistical divergence between two Dirac mixtures of arbitrary dimensions. Given a (source) Dirac mixture with many components representing an unknown hyperspherical distribution, a (target) Dirac mixture with fewer components is obtained via matching the source in the sense of least HCvMD. As the number of target Dirac components is configurable, the underlying distributions is represented in a more efficient and informative way. Based upon this hyperspherical Dirac mixture reapproximation (HDMR), we derive a density estimation method and a recursive filter. For density estimation, a maximum likelihood method is provided to reconstruct the underlying continuous distribution in the form of a von Mises-Fisher mixture. For recursive filtering, we introduce the hyperspherical reapproximation discrete filter (HRDF) for nonlinear hyperspherical estimation of dynamic systems under unknown system noise of arbitrary form. Simulations show that the HRDF delivers superior tracking performance over filters using sequential Monte Carlo and parametric modeling.


翻译:我们提出一个高效Dirac混合物在单位超光谱上进行分布分布模型的新方案。 一种所谓的超球本地累积分布( HLCD) 被引入为超球域内潜在连续密度的局部和平稳特征。 根据 HLCD, 对 Cram\'er- von Mises 距离( HCvMD) 进行多重调整, 以测量两种任意尺寸的Dirac混合物之间的统计差异。 鉴于一种( 源) 过滤器混合物, 有许多成分代表未知超球分布, 一种( 目标) Dirac 混合物, 其成分较少, 以最小 HCvMD 感感感感化源为一种本地和平稳的源。 由于目标 Dirac 组件的数量可以互译, 其基本分布方式以更高效和更丰富的方式得到体现。 根据这种超球色 Dirac 混合物再融合( HDRMR), 我们得出一个密度估计方法和循环过滤器。 对于密度估计, 一种最大的可能性方法, 将重新在一种不易变动的 IMIS- IMF IMF IMF IMFSLIRC 系统下以 的S IMIS IMVL IMIS IMF IMS IMF IMF IMF IMF IMF IMF IMF IMF IMF IMS IMS IMS IMS IMF IMF IMS IMS IMF IMS IMS IM IM IM IM IM IMF IMF IMF IM IM IM IMF IM IMF IMF IMF IML IMF IMS IMS IMS IMF IMF IML IM IM IM IMS IM IM IM IM IM IMS IML IMF IMF IMF IMF IMF IMF IMF IMF IMF IM IM IM IML IML IM IML IM IM IM IM IML IML IMF IMF IML IML IMF IMF IMF IM IM

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
16+阅读 · 2021年5月21日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月17日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员