For mobile robots, navigating cluttered or dynamic environments often necessitates non-prehensile manipulation, particularly when faced with objects that are too large, irregular, or fragile to grasp. The unpredictable behavior and varying physical properties of these objects significantly complicate manipulation tasks. To address this challenge, this manuscript proposes a novel Reactive Pushing Strategy. This strategy allows a mobile robot to dynamically adjust its base movements in real-time to achieve successful pushing maneuvers towards a target location. Notably, our strategy adapts the robot motion based on changes in contact location obtained through the tactile sensor covering the base, avoiding dependence on object-related assumptions and its modeled behavior. The effectiveness of the Reactive Pushing Strategy was initially evaluated in the simulation environment, where it significantly outperformed the compared baseline approaches. Following this, we validated the proposed strategy through real-world experiments, demonstrating the robot capability to push objects to the target points located in the entire vicinity of the robot. In both simulation and real-world experiments, the object-specific properties (shape, mass, friction, inertia) were altered along with the changes in target locations to assess the robustness of the proposed method comprehensively.
翻译:暂无翻译