We study two fundamental problems of distributed computing, consensus and approximate agreement, through a novel approach for proving lower bounds and impossibility results, that we call the asynchronous speedup theorem. For a given $n$-process task $\Pi$ and a given computational model $M$, we define a new task, called the closure of $\Pi$ with respect to $M$. The asynchronous speedup theorem states that if a task $\Pi$ is solvable in $t\geq 1$ rounds in $M$, then its closure w.r.t. $M$ is solvable in $t-1$ rounds in $M$. We prove this theorem for iterated models, as long as the model allows solo executions. We illustrate the power of our asynchronous speedup theorem by providing a new proof of the wait-free impossibility of consensus using read/write registers, and a new proof of the wait-free impossibility of solving consensus using registers and test\&set objects for $n>2$. The proof is merely by showing that, in each case, the closure of consensus (w.r.t. the corresponding model) is consensus itself. Our main application is the study of the power of additional objects, namely test\&set and binary consensus, for wait-free solving approximate agreement faster. By analyzing the closure of approximate agreement w.r.t. each of the two models, we show that while these objects are more powerful than read/write registers from the computability perspective, they are not more powerful as far as helping solving approximate agreement faster is concerned.


翻译:我们研究的是分配计算、共识和大致协议这两个根本问题,即通过新颖的方法来证明低限值和不可能的结果,即我们称之为无序超速理论。对于一个给定的美元处理任务和一个给定的计算模型,我们定义了一个新的任务,即关闭美元对美元。无序超速理论指出,如果一个任务用美元1回合以1美元计算,以美元计算,以美元计算,以美元计算较低的界限和不可能的结果,而以美元计算超速超速的超速理论。对于一个给定的美元处理任务和一个给定的计算模型,我们用美元计算超速理论来计算超速理论。只要该模型允许单独处决,我们就能证明这个超速模型。我们通过提供一个新的证据,证明我们无法等待的共识,使用免费登记册和测试目标以美元计算,以美元计算,以美元计算,以美元计算,以美元计算超速计算,以美元计算,以美元计算,以美元计算,以美元计算超速的超速计算。我们每次的登记册,以更接近的精确的精确的推算方式证明,我们最接近的“超速的协议”的“超速协议是“超速协议”。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月19日
Arxiv
0+阅读 · 2023年1月14日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员