A deep neural network using rectified linear units represents a continuous piecewise linear (CPWL) function and vice versa. Recent results in the literature estimated that the number of neurons needed to exactly represent any CPWL function grows exponentially with the number of pieces or exponentially in terms of the factorial of the number of distinct linear components. Moreover, such growth is amplified linearly with the input dimension. These existing results seem to indicate that the cost of representing a CPWL function is expensive. In this paper, we propose much tighter bounds and establish a polynomial time algorithm to find a network satisfying these bounds for any given CPWL function. We prove that the number of hidden neurons required to exactly represent any CPWL function is at most a quadratic function of the number of pieces. In contrast to all previous results, this upper bound is invariant to the input dimension. Besides the number of pieces, we also study the number of distinct linear components in CPWL functions. When such a number is also given, we prove that the quadratic complexity turns into bilinear, which implies a lower neural complexity because the number of distinct linear components is always not greater than the minimum number of pieces in a CPWL function. When the number of pieces is unknown, we prove that, in terms of the number of distinct linear components, the neural complexities of any CPWL function are at most polynomial growth for low-dimensional inputs and factorial growth for the worst-case scenario, which are significantly better than existing results in the literature.
翻译:使用校正线性单元的深神经网络使用纠正线性单元是一个连续的片断线线(CPWL)函数,反之亦然。文献中最近的结果估计,精确代表任何CPWL函数所需的神经神经元数量随着分数数的成倍增长,或者以不同线性组成部分数的因数成倍增长。此外,这种增长以输入量的成倍扩大。这些现有结果似乎表明,代表CPWL函数的费用是昂贵的。在本文中,我们建议了更紧密的界限,并建立了一个多元时间算法,以便为任何给定的CPWL函数找到一个符合这些界限的网络。我们证明,精确代表任何CPWL函数的隐性神经元数量在多数情况下是成倍增长的四级函数。与所有以前的结果相反,这种上限值与输入量不相容。我们还要研究CPL函数中不同的线性组成部分的数量。 当给出这样的数字时,我们证明, 二次曲线性复杂度转换成双线性关系, 意味着一个最低的神经性复杂性,因为最深的成份数在我们的直线性函数中是不同的直径数。