A set of segments in the plane may form a Euclidean TSP tour or a matching, among others. Optimal TSP tours as well as minimum weight perfect matchings have no crossing segments, but several heuristics and approximation algorithms may produce solutions with crossings. To improve such solutions, we can successively apply a flip operation that replaces a pair of crossing segments by non-crossing ones. This paper considers the maximum number D(n) of flips performed on n segments. First, we present reductions relating D(n) for different sets of segments (TSP tours, monochromatic matchings, red-blue matchings, and multigraphs). Second, we show that if all except t points are in convex position, then D(n) = O(tn^2), providing a smooth transition between the convex O(n^2) bound and the general O(n^3) bound. Last, we show that if instead of counting the total number of flips, we only count the number of distinct flips, then the cubic upper bound improves to O(n^{8/3}).
翻译:平面的一组区块可以形成 Euclidean TSP 巡航或匹配。 最佳 TSP 巡航以及最小重量完美匹配没有交叉段, 但一些超光速和近似算法可以产生交叉段的解决方案 。 为了改进这些解决方案, 我们可以连续应用翻转操作, 以非交叉段取代一对交叉段 。 本文考虑在 n 段上执行的最大翻转数 D( n) 。 首先, 我们为不同组块( TSP 巡航、 单色比对、 红蓝色比对和多面段) 的 D( n) 进行递减 。 其次, 我们显示, 如果除 t 点外的所有点都处于 convex 位置, 然后 D( n) = O( tn) 2 ), 提供连接点和 普通 O ( n) 3 捆绑定之间的平稳转换 。 最后, 我们显示, 如果不计算翻数的总数, 我们只计算不同的翻数, 则只计算不同的翻数, 然后三次上框改进为 O( n) ( nQ8/3} 。