Link streams offer a good model for representing interactions over time. They consist of links $(b,e,u,v)$, where $u$ and $v$ are vertices interacting during the whole time interval $[b,e]$. In this paper, we deal with the problem of enumerating maximal cliques in link streams. A clique is a pair $(C,[t_0,t_1])$, where $C$ is a set of vertices that all interact pairwise during the full interval $[t_0,t_1]$. It is maximal when neither its set of vertices nor its time interval can be increased. Some of the main works solving this problem are based on the famous Bron-Kerbosch algorithm for enumerating maximal cliques in graphs. We take this idea as a starting point to propose a new algorithm which matches the cliques of the instantaneous graphs formed by links existing at a given time $t$ to the maximal cliques of the link stream. We prove its validity and compute its complexity, which is better than the state-of-the art ones in many cases of interest. We also study the output-sensitive complexity, which is close to the output size, thereby showing that our algorithm is efficient. To confirm this, we perform experiments on link streams used in the state of the art, and on massive link streams, up to 100 million links. In all cases our algorithm is faster, mostly by a factor of at least 10 and up to a factor of $10^4$. Moreover, it scales to massive link streams for which the existing algorithms are not able to provide the solution.


翻译:链接流为代表长期互动提供了一个很好的模式。 它们由链接 $( b, e, u, v) 美元组成, 美元和 $v) 美元, 其中美元和 $v 美元是整个时间间隔 $[ b, e, e] 美元 。 在本文中, 我们处理在链接流中计算最大 cliques 的问题。 一个 cloique 是一对 $( C, [ t_ 0, t_ 1) 美元, 美元是一组在全部时间间隔 $[ t_ 0, t_ 1] 中所有自动互动的顶端。 当它的顶端或时间间隔都无法增加时, 美元和 美元是顶尖的顶尖的顶端点 。 解决此问题的主要工作是以著名的 Bron- Kerbosch 算法来计算最大 cliquequencle 。 我们以这个想法作为起点的新的算法, 在一个特定时间段段里, $tal legal lex 中, 我们以最快速的递解算算算算出它的精度 。 。 在 10 ral 中, 我们以 lix lix lix 的精度中, 的精度中, 我们的精度的精度的精度中, 的精度能到 。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
26+阅读 · 2022年12月26日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员