Researchers are often interested in examining between-individual differences in within-individual processes. If the process under investigation is tracked for a long time, its trajectory may show a certain degree of nonlinearity, so that the rate-of-change is not constant. A fundamental goal of modeling such nonlinear processes is to estimate model parameters that reflect meaningful aspects of change, including the parameters related to change and other parameters that shed light on substantive hypotheses. However, if the measurement occasion is unstructured, existing models cannot simultaneously estimate these two types of parameters. This article has three goals. First, we view the change over time as the area under the curve (AUC) of the rate-of-change versus time (r-t) graph. Second, using the instantaneous rate-of-change midway through a time interval to approximate the average rate-of-change during that interval, we propose a new specification to describe longitudinal processes. In addition to obtaining the individual change-related parameters and other parameters related to specific research questions, the new specification allows for unequally-space study waves and individual measurement occasions around each wave. Third, we derive the model-based interval-specific change and change-from-baseline, two common measures to evaluate change over time. We evaluate the proposed specification through a simulation study and a real-world data analysis. We also provide OpenMx and Mplus 8 code for each model with the novel specification.


翻译:研究人员往往有兴趣研究个人内部流程中的个人差异。如果对调查过程进行长期跟踪,其轨迹可能显示一定程度的非线性,因此变化速度不会保持不变。模型模拟这种非线性进程的基本目标是估计反映变化有意义方面的模型参数,包括与变化有关的参数和揭示实质性假设的其他参数。但是,如果测量时间不结构,现有模型无法同时估计这两类参数。这一条有三项目标。首先,我们视长期变化为变化率与时间(r-t)图的曲线(AUC)下的一个区域。第二,利用瞬时变化率中间隔,以近似该间隔期间的平均变化率,我们提出新的规格,以描述长度过程。除了获得与具体研究问题有关的单个变化相关参数和其他参数外,新的规格允许在每一波上进行不均匀的空间研究波和单个测量时间段。第三,我们用基于模型的间隔值与时间(r-t)图解的曲线(r-t)图解(r)图(r-rx)图(rx)图解(rent-rental)图(ral-ral-col-ral-ral-ral-ral-ral-ral-ral-ral-ral-x)分析,我们从每个模型进行一项对模型的模型-x-x-x-ral-x-x-x-x-x-x-x-x-ral-ral-x-ral-x-x-ral-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-ax-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xxxxxx-xxxxxxxx-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员