Negative sampling has been heavily used to train recommender models on large-scale data, wherein sampling hard examples usually not only accelerates the convergence but also improves the model accuracy. Nevertheless, the reasons for the effectiveness of Hard Negative Sampling (HNS) have not been revealed yet. In this work, we fill the research gap by conducting thorough theoretical analyses on HNS. Firstly, we prove that employing HNS on the Bayesian Personalized Ranking (BPR) learner is equivalent to optimizing One-way Partial AUC (OPAUC). Concretely, the BPR equipped with Dynamic Negative Sampling (DNS) is an exact estimator, while with softmax-based sampling is a soft estimator. Secondly, we prove that OPAUC has a stronger connection with Top-K evaluation metrics than AUC and verify it with simulation experiments. These analyses establish the theoretical foundation of HNS in optimizing Top-K recommendation performance for the first time. On these bases, we offer two insightful guidelines for effective usage of HNS: 1) the sampling hardness should be controllable, e.g., via pre-defined hyper-parameters, to adapt to different Top-K metrics and datasets; 2) the smaller the $K$ we emphasize in Top-K evaluation metrics, the harder the negative samples we should draw. Extensive experiments on three real-world benchmarks verify the two guidelines.


翻译:大量使用负抽样来培训大型数据的建议模型,其中抽样的硬实例通常不仅能加速趋同,而且还能提高模型的准确性。然而,硬负抽样(HNS)有效性的原因尚未披露。在这项工作中,我们通过对HNS进行彻底的理论分析来填补研究差距。首先,我们证明在巴伊西亚个性化排名(BPR)中采用HNS等同于优化单向部分AUC(OPAUC)。具体地说,装有动态负抽样(DNS)的BPR是一个精确的估测器,而软式模量抽样(DNS)则是一个软式估测器。第二,我们证明OPAUSC与高K评价指标的联系比AUC更紧密,并通过模拟实验加以核实。这些分析建立了HNS在第一次优化Top-K建议性能方面的理论基础。我们为有效使用HNS提供了两个深刻的精辟指南:1)取样的硬度应该是可控制的,例如,通过基于软式的取样进行软式的标尺取样,例如,用更精确的TAUK的标定的标尺比AUT-I的标定的标尺,并用更硬的标尺,我们要在3的基底的标定的标定的标定的基的基中,我们的基底的标定的基底的标定的基底的基底的基底的基底的基底的基号,我们的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底基底的基的基的基底的基底的基底的基底的基的基的基底的基底的基的基的基底的基底的基底的基底的基的基的基的基的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基底的基的基的基的基的基的基底的基底的基底的基底的基底的基底基底基底基的基的基的基的基的基底的基的基底的基

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月10日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员