In compositional data, detecting which part of the whole delineates heterogeneity is important. The aim is to propose a procedure to quantify this term in the multivariate regression context without abandoning the data's natural restriction. A single probabilistic model with a hierarchical structure was built for multiple compositional data. An objective criterion based on skewness and kurtosis metrics provides support to characterize each component's performance as well as to assist in choosing one component as a reference avoiding model identifiability issues. The inference procedure was done under the Bayesian approach using the Hamiltonian Monte Carlo (HMC) method to obtain the posterior distribution of interest. The Kullback-Leibler divergence (KLD) from information theory and the Aitchison distance metrics are calculated to compute the similarity between compositions to compare scenarios in the model validation process. The proposal was motivated by a composition structure with high uncertainty in the Abrolhos Reefs of Brazil as a consequence of a dam rupture. The results support an understanding of patterns in the studied process recognizing local effects on each component as well as quantifying the precision parameter. These highlights contribute to characterizing the marine life community in areas that were affected by anthropogenic damage.


翻译:在组成数据中,发现整体的哪一部分可以分辨不同特性,这是十分重要的。目的是提出一个程序,在多变回归背景下,在不放弃数据自然限制的情况下,在多变回归背景下量化这一术语,同时不放弃数据的自然限制。为多个组成数据建立了一个带有等级结构的单一概率模型。基于扭曲和骨质疏松度测量的客观标准,为确定每个组成部分的性能提供了支持,并协助选择一个组成部分,作为避免可辨性问题模型的参考。根据巴伊西亚方法,利用汉密尔顿·蒙特卡洛(HMC)方法,在获取利益后方分布时,采用了推论程序。从信息理论和艾奇森距离测量中计算出Kullback-利伯尔差异(KLDD)是为了计算出各种组成之间的相似性,以比较模型验证进程中的假设情况。提案的动机是巴西的阿布洛霍珊瑚礁的构成结构由于水坝破裂而具有高度不确定性。其结果有助于理解所研究的进程中的形态,承认对每个组成部分的当地影响,并通过测量人为参数来量化海洋生命的精确度。这些特点有助于确定影响区域的特性。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员