We show that the deterministic decision tree complexity of a (partial) function or relation $f$ lifts to the deterministic parity decision tree (PDT) size complexity of the composed function/relation $f \circ g$ as long as the gadget $g$ satisfies a property that we call stifling. We observe that several simple gadgets of constant size, like Indexing on 3 input bits, Inner Product on 4 input bits, Majority on 3 input bits and random functions, satisfy this property. It can be shown that existing randomized communication lifting theorems ([G\"{o}\"{o}s, Pitassi, Watson. SICOMP'20], [Chattopadhyay et al. SICOMP'21]) imply PDT-size lifting. However there are two shortcomings of this approach: first they lift randomized decision tree complexity of $f$, which could be exponentially smaller than its deterministic counterpart when either $f$ is a partial function or even a total search problem. Second, the size of the gadgets in such lifting theorems are as large as logarithmic in the size of the input to $f$. Reducing the gadget size to a constant is an important open problem at the frontier of current research. Our result shows that even a random constant-size gadget does enable lifting to PDT size. Further, it also yields the first systematic way of turning lower bounds on the width of tree-like resolution proofs of the unsatisfiability of constant-width CNF formulas to lower bounds on the size of tree-like proofs in the resolution with parity system, i.e., $\textit{Res}$($\oplus$), of the unsatisfiability of closely related constant-width CNF formulas.
翻译:我们显示一个( 部分) 函数的确定性决定树复杂度 或 $f 关系 的确定性决定树复杂度 。 您可以显示, 组成函数/ 折价 $f \ circ g$ 的确定性决定树复杂度 。 只要组合函数/ 折价 $ g$ 满足一个我们称之为令人窒息的属性。 我们观察到, 一些固定大小的简单工具, 比如 3 个输入位的索引、 4 输入位数的内产、 3 输入位数和随机函数的多数性, 满足此属性 。 可以显示, 现有的随机通信升序( [G\\" { o\\\\\\\ { { {o} { o} 的大小, Pitassis, SICOMP 21 ) 意味着PDT 大小的提升。 但是, 这个方法有两个缺点: 首先, 将决定树的随机性树复杂复杂性提升到 $fdd, 当 美元是部分功能或完全搜索问题时, 。 。 的递解算法的递缩的递缩的递缩的递缩大小, 在不断的系统上, 解算的递增的递增的递增的递增的递增的递增的递增的递增的底的底的递增。