Millions of smart contracts have been deployed onto the Ethereum platform, posing potential attack subjects. Therefore, analyzing contract binaries is vital since their sources are unavailable, involving identification comprising function entry identification and detecting its boundaries. Such boundaries are critical to many smart contract applications, e.g. reverse engineering and profiling. Unfortunately, it is challenging to identify functions from these stripped contract binaries due to the lack of internal function call statements and the compiler-inducing instruction reshuffling. Recently, several existing works excessively relied on a set of handcrafted heuristic rules which impose several faults. To address this issue, we propose a novel neural network-based framework for EVM bytecode Function Entries and Boundaries Identification (neural-FEBI) that does not rely on a fixed set of handcrafted rules. Instead, it used a two-level bi-Long Short-Term Memory network and a Conditional Random Field network to locate the function entries. The suggested framework also devises a control flow traversal algorithm to determine the code segments reachable from the function entry as its boundary. Several experiments on 38,996 publicly available smart contracts collected as binary demonstrate that neural-FEBI confirms the lowest and highest F1-scores for the function entries identification task across different datasets of 88.3 to 99.7, respectively. Its performance on the function boundary identification task is also increased from 79.4% to 97.1% compared with state-of-the-art. We further demonstrate that the identified function information can be used to construct more accurate intra-procedural CFGs and call graphs. The experimental results confirm that the proposed framework significantly outperforms state-of-the-art, often based on handcrafted heuristic rules.


翻译:数以百万计的智能合同被部署到 Etheum 平台上, 构成了潜在的攻击对象。 因此, 分析合同二进制至关重要, 因为它们没有来源, 包括功能输入识别和探测其边界。 这些界限对于许多智能合同应用程序至关重要, 例如反向工程和剖析。 不幸的是, 由于缺乏内部功能调用声明和编译导指令重组, 确定这些被剥除的合同二进制的二进制书箱的功能非常困难。 最近, 一些现有的工程过分依赖一套手工制作的超常规则, 从而造成若干错误。 为了解决这个问题, 我们提议为 EVM 元代码识别和边界进行新的神经网络化网络化框架。 EVM 字码功能和边界识别( National- FEBIB) 。 这些界限框架并不依赖一套固定的手写规则。 相反, 它使用双级双级双长期内存内存存储器网络和调控调字段网络来定位功能。 拟议的框架还设计一种基于控制流传动的调算算法, 来确定从函数条目条目条目条目条目条目条目条目进入的代码。 在38- 996 上进行数的实验运行智能功能中, 。 运行智能功能中, 运行运行中, 运行中, 运行中, 运行中的数据功能将显示最高智能功能功能功能的功能功能将显示为最高级智能功能, 。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员