Fiber metal laminates (FML) are composite structures consisting of metals and fiber reinforced plastics (FRP) which have experienced an increasing interest as the choice of materials in aerospace and automobile industries. Due to a sophisticated built up of the material, not only the design and production of such structures is challenging but also its damage detection. This research work focuses on damage identification in FML with guided ultrasonic waves (GUW) through an inverse approach based on the Bayesian paradigm. As the Bayesian inference approach involves multiple queries of the underlying system, a parameterized reduced-order model (ROM) is used to closely approximate the solution with considerably less computational cost. The signals measured by the embedded sensors and the ROM forecasts are employed for the localization and characterization of damage in FML. In this paper, a Markov Chain Monte-Carlo (MCMC) based Metropolis-Hastings (MH) algorithm and an Ensemble Kalman filtering (EnKF) technique are deployed to identify the damage. Numerical tests illustrate the approaches and the results are compared in regard to accuracy and efficiency. It is found that both methods are successful in multivariate characterization of the damage with a high accuracy and were also able to quantify their associated uncertainties. The EnKF distinguishes itself with the MCMC-MH algorithm in the matter of computational efficiency. In this application of identifying the damage, the EnKF is approximately thrice faster than the MCMC-MH.


翻译:金属金属层板(FML)是由金属和纤维强化塑料组成的复合结构(FML),在航空航天工业和汽车工业中,对材料的选择越来越感兴趣,由于材料的精密结构,不仅这种结构的设计和生产具有挑战性,而且其损坏探测也十分困难。这一研究工作的重点是在FML中通过以巴伊西亚模式为基础的反向方法,用引导超声波(GUW)识别损害。由于Bayesian 推断法涉及对基础系统进行多次查询,因此使用一个参数化的减序模型(ROM)来以大大降低计算成本来接近解决方案。由于嵌入式传感器和ROM预测所测量的信号被用于FMM的损坏定位和定性。在本论文中,基于Metopolis-Hastings(MH)的Markov连锁蒙特-Carlo(MC)算法和Ensemble Kalman过滤法(EnKFF)用于确定损害,在数值测试方法和结果中比较方法和结果与精确性和效率的比较,其精确度本身。发现,其精确度是成功的方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Optimal precision for GANs
Arxiv
0+阅读 · 2022年7月21日
Arxiv
0+阅读 · 2022年7月20日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员