We apply a novel framework for decomposing and reasoning about free space in an environment to a multi-agent persistent monitoring problem. Our decomposition method represents free space as a collection of ellipsoids associated with a weighted connectivity graph. The same ellipsoids used for reasoning about connectivity and distance during high level planning can be used as state constraints in a Model Predictive Control algorithm to enforce collision-free motion. This structure allows for streamlined implementation in distributed multi-agent tasks in 2D and 3D environments. We illustrate its effectiveness for a team of tracking agents tasked with monitoring a group of target agents. Our algorithm uses the ellipsoid decomposition as a primitive for the coordination, path planning, and control of the tracking agents. Simulations with four tracking agents monitoring fifteen dynamic targets in obstacle-rich environments demonstrate the performance of our algorithm.
翻译:我们采用一个新的框架,在环境中自由空间的分解和推理方法,解决多试剂持续监测问题。我们的分解方法代表自由空间,作为与加权连接图相关的一个粒子集合。在高层次规划期间用于连接和距离推理的同一粒子,可作为模型预测控制算法中的国家制约因素,以强制实施无碰撞动作。这一结构可以简化在2D和3D环境中分散的多试剂任务的执行。我们说明它对于一个负责监测一组目标物剂的追踪代理人小组的有效性。我们的算法使用电子分解法作为对跟踪物剂进行协调、路径规划和控制的原始方法。与四个跟踪物剂进行模拟,以监测充满障碍的环境下的15个动态目标。我们算法的表现。