We introduce and study the communication complexity of computing the inner product of two vectors, where the input is restricted w.r.t. a norm $N$ on the space $\mathbb{R}^n$. Here, Alice and Bob hold two vectors $v,u$ such that $\|v\|_N\le 1$ and $\|u\|_{N^*}\le 1$, where $N^*$ is the dual norm. They want to compute their inner product $\langle v,u \rangle$ up to an $\varepsilon$ additive term. The problem is denoted by $\mathrm{IP}_N$. We systematically study $\mathrm{IP}_N$, showing the following results: - For any symmetric norm $N$, given $\|v\|_N\le 1$ and $\|u\|_{N^*}\le 1$ there is a randomized protocol for $\mathrm{IP}_N$ using $\tilde{\mathcal{O}}(\varepsilon^{-6} \log n)$ bits -- we will denote this by $\mathcal{R}_{\varepsilon,1/3}(\mathrm{IP}_{N}) \leq \tilde{\mathcal{O}}(\varepsilon^{-6} \log n)$. - One way communication complexity $\overrightarrow{\mathcal{R}}(\mathrm{IP}_{\ell_p})\leq\mathcal{O}(\varepsilon^{-\max(2,p)}\cdot \log\frac n\varepsilon)$, and a nearly matching lower bound $\overrightarrow{\mathcal{R}}(\mathrm{IP}_{\ell_p}) \geq \Omega(\varepsilon^{-\max(2,p)})$ for $\varepsilon^{-\max(2,p)} \ll n$. - One way communication complexity $\overrightarrow{\mathcal{R}}(N)$ for a symmetric norm $N$ is governed by embeddings $\ell_\infty^k$ into $N$. Specifically, while a small distortion embedding easily implies a lower bound $\Omega(k)$, we show that, conversely, non-existence of such an embedding implies protocol with communication $k^{\mathcal{O}(\log \log k)} \log^2 n$. - For arbitrary origin symmetric convex polytope $P$, we show $\mathcal{R}(\mathrm{IP}_{N}) \le\mathcal{O}(\varepsilon^{-2} \log \mathrm{xc}(P))$, where $N$ is the unique norm for which $P$ is a unit ball, and $\mathrm{xc}(P)$ is the extension complexity of $P$.
翻译:我们介绍并研究计算两个矢量内部产值的通信复杂性, 其中输入量是限制的 w.r.t。 这里, 爱丽丝和鲍勃持有两个矢量 $v, 美元, 美元 1美元, 美元, 美元是双重标准 。 他们想要用 $\ legle v, u\ rangle$ 来计算其内部产值 $, 美元直到 varepsilon 添加期 。 问题由 $\ harmbr@ IPN$ 来表示 。 我们系统研究 $ mathrbr@ IPN. 美元, 显示以下结果 : - 任何标度标准 美元, 美元 1美元 美元 和 ⁇ 美元 1美元 。 他们想要用 $\ matr\ r\\ r\\ r\ r\\ r\\ r\\\\ r\\ r\ r\\\ r\\\\\\\\\\ r\ r\ r\\\\ r\ r\ r\ r\\\\\\\\\ r\ r\ r\\\\\\\ r\\ r\ r\ r\ r\\\\\\\ r\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ r\\ r\\\\\\\\\\\\\\ r\\ r\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\