For end-to-end performance testing, workload simulation is an important method to enhance the real workload while protecting user privacy. To ensure the effectiveness of the workload simulation, it is necessary to dynamically evaluate the similarity of system inner status using key performance indicators(KPIs), which provide a comprehensive record of the system status, between the simulated workload and real workload by injecting workload into the system. However, due to the characteristics of KPIs, including large data size, amplitude differences, phase shifts, non-smoothness, high dimension, and Large numerical span, it is unpractical to evaluation on the full volume of KPIs and is challenging to measure the similarity between KPIs. In this paper, we propose a similarity metric algorithm for KPIs, extend shape-based distance(ESBD), which describes both shape and intensity similarity. Around ESBD, a KPIs-based quality evaluation of workload simulation(KEWS) was proposed, which consists of four steps: KPIs preprocessing, KPIs screening, KPIs clustering, and KPIs evaluation. These techniques help mitigate the negative impact of the KPIs characteristics and give a comprehensive evaluation result. The experiments conducted on Hipstershop, an open-source microservices application, show the effectiveness of the ESBD and KEWS.
翻译:对于端到端的绩效测试,工作量模拟是提高实际工作量,同时保护用户隐私的一个重要方法。为确保工作量模拟的有效性,有必要使用关键业绩指标(KPI)动态地评估系统内部状况的相似性,这些指标通过向系统注入工作量,全面记录模拟工作量与实际工作量之间的系统状况,但是,由于KPI的特征,包括数据大小大、振幅差异、阶段转移、非抽气、高尺寸和大数字跨度,因此,评价基本投资指标的全部数量是不切实际的,而且难以衡量基本投资指标之间的相似性。在本文件中,我们提议为基本投资指标提出类似的衡量算法,扩大基于形状的距离(ESBD),描述形状和强度的相似性。由于基本投资指标模拟(KEWS)有四个步骤,其中包括:基本投资指标预处理、基本投资指标筛选、基本投资指标组合和基本投资指标评价。这些技术有助于减轻基本投资指标特性的负面影响,对基本投资指标的开放性能评估,对基础服务局的应用进行一项试验。