The accurate forecasting of infectious epidemic diseases is the key to effective control of the epidemic situation in a region. Most existing methods ignore potential dynamic dependencies between regions or the importance of temporal dependencies and inter-dependencies between regions for prediction. In this paper, we propose an Inter- and Intra-Series Embeddings Fusion Network (SEFNet) to improve epidemic prediction performance. SEFNet consists of two parallel modules, named Inter-Series Embedding Module and Intra-Series Embedding Module. In Inter-Series Embedding Module, a multi-scale unified convolution component called Region-Aware Convolution is proposed, which cooperates with self-attention to capture dynamic dependencies between time series obtained from multiple regions. The Intra-Series Embedding Module uses Long Short-Term Memory to capture temporal relationships within each time series. Subsequently, we learn the influence degree of two embeddings and fuse them with the parametric-matrix fusion method. To further improve the robustness, SEFNet also integrates a traditional autoregressive component in parallel with nonlinear neural networks. Experiments on four real-world epidemic-related datasets show SEFNet is effective and outperforms state-of-the-art baselines.
翻译:准确预测传染性传染病是有效控制一个区域流行病情况的关键。大多数现有方法忽视了区域间潜在的动态依赖性或区域间时间依赖性和相互依存性的重要性。在本文件中,我们提议建立一个跨和跨嵌入嵌入融合网络(SEFNet)来改善流行病预测性能。SEFNet由两个平行模块组成,称为跨层嵌入模块和内层嵌入模块。在跨层嵌入模块中,提出了一个称为区域-Aware Convolution(区域-Award Convolution)的多规模的统一共变组合部分,该组合与从多个区域获得的时间序列合作,捕捉动态依赖性。内嵌入模块使用长期短期内存(SEFNet)来捕捉每个时间序列内的时间关系。随后,我们了解了两个嵌入的影响程度,并将它们与对准矩阵融合方法相结合。为了进一步提高坚固性,SEFNet还将一个传统的自动递增组件与非线性内线性神经网络(Sloveal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-st-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-st-stal-stal-stal-stal-stal-stal-st-stal-stal-st-stal-stal-stal-st-st-st-stal-stal-d-d-d-d-d-d-stal-st-st-st-st-stal-st)网络)网络结合数据网络结合数据网络。实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性实验性基和4-Sal-Sal-s-s-S-s-s-s-Sal-Sal-Sal-Sal-Sal-S-S-S-S-S-S-S-S-Sal-Sal-S-S-S-s-s-S-s-S-S