This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-K\r{u}rka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension~1, but also dimension~1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension~ 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension.
翻译:本文从计算角度研究三个细胞自动数据类别: 冻结细胞自动数据, 细胞自动数据状态只能根据各州的某种顺序降低; 细胞自动数据, 每个单元格只能在任何轨道上进行一定数目的状态变化, 最后是细胞自动数据, 每个轨道会合到某个固定点。 文献中研究的许多例子符合这些定义, 尤其是 S. Ulam 在60年代开始的关于晶体增长的工程。 这里处理的中心问题是, 基本特性的计算能力和计算性硬性如何受到趋同的限制、 变化的界限或每个单元格的局部递减的影响。 通过研究各种基准问题( 短期预测、 长期可达性、 限), 并考虑各种复杂度和尺度( LOGSPACE vs. PTIME, 通讯复杂性, 图解调调调和计算等级) 我们给出了一个丰富和微妙的答案: 这种细胞自动自动化数据的总体计算复杂性取决于所考虑的类别( 以上三个方面), 其尺寸, 直径直径- 直径- 直径 直- 直径( 直- 直径) 直径- 直径- 直径- 直径- 上- 直- 递化- 递增- 度- 度- 直- 度- 度- 直- 直- 直- 直- 等- 等- 直- 直- 直- 直- 直 直- 等- 等- 等- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 等- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 直- 等- 直- 直- 等- 直- 直- 直- 直- 直- 直- 直- 直- 直- 等- 直- 直