As humans, we can modify our assumptions about a scene by imagining alternative objects or concepts in our minds. For example, we can easily anticipate the implications of the sun being overcast by rain clouds (e.g., the street will get wet) and accordingly prepare for that. In this paper, we introduce a new task/dataset called Commonsense Reasoning for Counterfactual Scene Imagination (CoSIm) which is designed to evaluate the ability of AI systems to reason about scene change imagination. In this task/dataset, models are given an image and an initial question-response pair about the image. Next, a counterfactual imagined scene change (in textual form) is applied, and the model has to predict the new response to the initial question based on this scene change. We collect 3.5K high-quality and challenging data instances, with each instance consisting of an image, a commonsense question with a response, a description of a counterfactual change, a new response to the question, and three distractor responses. Our dataset contains various complex scene change types (such as object addition/removal/state change, event description, environment change, etc.) that require models to imagine many different scenarios and reason about the changed scenes. We present a baseline model based on a vision-language Transformer (i.e., LXMERT) and ablation studies. Through human evaluation, we demonstrate a large human-model performance gap, suggesting room for promising future work on this challenging counterfactual, scene imagination task. Our code and dataset are publicly available at: https://github.com/hyounghk/CoSIm
翻译:作为人类,我们可以通过想象大脑中的替代物体或概念来修改我们对场景的假设。 例如,我们可以很容易地预测太阳被雨云遮盖(例如,街道会变得湿润)并据此准备。 在本文中,我们引入了一个新的任务/数据集,名为“反事实场景想象力常识理由”(COSIm),旨在评价AI系统了解场景变化想象力的能力。在这个任务/数据集中,模型被给一个图像和关于图像的初步问答配对。接下来,我们可以应用一个反事实想象的场景变化(如文字形式)的影响,模型必须预测根据场景变化对最初问题作出的新反应。我们收集了3.5K高品质和具有挑战性的数据实例,每例都包含一个图像、一个常见问题,一个反事实变化描述,一个问题的新反应,一个对问题的新反应,以及三个具有挑战性的反应。我们的数据集包含各种复杂的场景变化类型(例如:对象/移动/状态变化,事件描述,一个基于环境的模型,一个不同的模型,一个基于我们模型的模型的模型,一个模型,一个不同的环境变化,一个不同的模型。 展示一个我们未来的模型的模型。 一个基于一个模型的模型的模型的模型。