Underwater acoustic monitoring systems record many hours of audio data for marine research, making fast and reliable non-causal signal detection paramount. Such detectors assist in reducing the amount of labor required for signal annotations, which often contain large portions devoid of signals. Cetacean vocalization detection based on spectral entropy is investigated as a means of vocalization discovery. Previous techniques using spectral entropy (SE) mostly consider time-frequency enhancement of the entropy measure, and utilize the STFT as its time-frequency (TF) decomposition. SE methods also requires the user to set a detection threshold manually, which call for knowledge of the produced entropy measures. This paper considers median filtering as a simple, effective way to provide temporal stabilization to the entropy measure, and considers the CWT as an alternative TF decomposition. K-means clustering is used to determine the threshold required to accurately separate the signal/no-signal entropy measures, resulting in a one-dimensional, two-class classification problem. The class means are used to perform pseudo-probabilistic soft class assignment, which is a useful metric in algorithmic development. The effect of median filtering, signal-to-noise ratio and the chosen TF decomposition are investigated. The proposed method shows a significant improvement in detection accuracy and specificity, while also providing a more interpretable detection threshold setting via soft class assignment.
翻译:水下声学监测系统记录了用于海洋研究的许多小时的音频数据,使快速和可靠的非因果信号检测成为最重要的。这种探测器有助于减少信号说明所需的工作量,而信号说明往往含有大量没有信号的部分。根据光谱酶的鲸目动物声学检测作为声化发现的一种方法。以前使用光谱酶(SE)的技术主要考虑对信号/无信号酶测量进行时间频率增强,并使用STFT作为时间频率(TF)分解。SE方法还要求用户手动设定一个探测阈值,要求了解生成的酶测量测量测量措施。本文认为中位过滤是一种简单、有效的方法,可以对酶测量措施提供时间稳定性稳定,并将CWT视为一种可替代的TF解剖。K手段集群主要用来确定精确分离信号/无信号酶测量措施所需的阈值,从而造成一维、二等分级的分级分类问题。类方法用于进行假的检测性软级分类,这需要了解所制作的诱变软级测量等级测量,这是一种简单度测量比的简单度测量方法,同时也提供一种重要的测测测测测测度,同时进行测测测测测测测测测度的中的方法。