We give a simple, generic conformal prediction method for sequential prediction that achieves target empirical coverage guarantees against adversarially chosen data. It is computationally lightweight -- comparable to split conformal prediction -- but does not require having a held-out validation set, and so all data can be used for training models from which to derive a conformal score. It gives stronger than marginal coverage guarantees in two ways. First, it gives threshold calibrated prediction sets that have correct empirical coverage even conditional on the threshold used to form the prediction set from the conformal score. Second, the user can specify an arbitrary collection of subsets of the feature space -- possibly intersecting -- and the coverage guarantees also hold conditional on membership in each of these subsets. We call our algorithm MVP, short for MultiValid Prediction. We give both theory and an extensive set of empirical evaluations.
翻译:我们给连续预测提供一种简单、通用的一致预测方法,即实现针对对抗性选择数据的实验性保障目标的连续预测。这是计算性轻量 -- -- 与对立性预测可比较 -- -- 但并不要求有一个搁置的验证组,因此所有数据都可以用于培训模型,从中得出一致的评分。它以两种方式提供比边际保险更强的保证。首先,它提供门槛校准的预测组,这些阈值的校准预测组即使以用于形成对立性评分的预测的阈值为条件,也具有正确的实验性覆盖。第二,用户可以指定任意收集地收集地貌空间的子组 -- -- 可能相互交叉 -- -- 并且覆盖保证也以每个组的成员资格为条件。我们称之为算法MVP,短于多Valid预测。我们给出理论和广泛的经验评价组。