Adaptive multiple testing with covariates is an important research direction that has gained major attention in recent years. It has been widely recognized that leveraging side information provided by auxiliary covariates can improve the power of false discovery rate (FDR) procedures. Currently, most such procedures are devised with $p$-values as their main statistics. However, for two-sided hypotheses, the usual data processing step that transforms the primary statistics, known as $z$-values, into $p$-values not only leads to a loss of information carried by the main statistics, but can also undermine the ability of the covariates to assist with the FDR inference. We develop a $z$-value based covariate-adaptive (ZAP) methodology that operates on the intact structural information encoded jointly by the $z$-values and covariates. It seeks to emulate the oracle $z$-value procedure via a working model, and its rejection regions significantly depart from those of the $p$-value adaptive testing approaches. The key strength of ZAP is that the FDR control is guaranteed with minimal assumptions, even when the working model is misspecified. We demonstrate the state-of-the-art performance of ZAP using both simulated and real data, which shows that the efficiency gain can be substantial in comparison with $p$-value based methods. Our methodology is implemented in the $\texttt{R}$ package $\texttt{zap}$.


翻译:使用共变数的适应性多重测试是一个重要的研究方向,近年来引起了人们的极大关注。人们广泛认识到,利用辅助共变提供的侧边信息可以提高假发现率(FDR)程序的力量。目前,大多数此类程序都是用美元价值设计的,而其主要统计数据则是用美元价值(ZAP)共同编码的完整结构信息设计出来的。但是,对于双面假设,通常的数据处理步骤将被称为z美元价值的原始统计数据转换成美元价值程序,这种步骤不仅导致损失主要统计数据所传播的信息,而且还会削弱辅助共变数协助FDR推断的能力。我们开发了一个以美元价值为基础的基于共变换-适应(ZAP)程序(ZAP)方法,该方法以美元价值为单位,用美元价值(z-美元)和变换值(ZAP)共同编码的完整结构信息运作。它试图通过一种工作模型来模仿美元价值(z)程序,其拒绝区域与美元价值调整测试方法大大偏离。ZAP的关键力量是,以美元值为基础的FDRDR控制以最低的美元价值为基数,即便在模拟方法中也用实际方法展示。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
专知会员服务
53+阅读 · 2020年10月11日
专知会员服务
52+阅读 · 2020年9月7日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
25+阅读 · 2020年5月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月20日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员