Reduced basis approximations of Optimal Control Problems (OCPs) governed by steady partial differential equations (PDEs) with random parametric inputs are analyzed and constructed. Such approximations are based on a Reduced Order Model, which in this work is constructed using the method of weighted Proper Orthogonal Decomposition. This Reduced Order Model then is used to efficiently compute the reduced basis approximation for any outcome of the random parameter. We demonstrate that such OCPs are well-posed by applying the adjoint approach, which also works in the presence of admissibility constraints and in the case of non linear-quadratic OCPs, and thus is more general than the conventional Lagrangian approach. We also show that a step in the construction of these Reduced Order Models, known as the aggregation step, is not fundamental and can in principle be skipped for noncoercive problems, leading to a cheaper online phase. Numerical applications in three scenarios from environmental science are considered, in which the governing PDE is steady and the control is distributed. Various parameter distributions are taken, and several implementations of the weighted Proper Orthogonal Decomposition are compared by choosing different quadrature rules.


翻译:以稳定的局部偏差方程(PDEs)为调控的最佳控制问题(OCPs)基础近似值下降,并有随机的参数输入。这种近似值以一个减序模型为基础,在这项工作中,采用加权正正正对分解分解法构建。这个减序模型然后用于有效计算随机参数的任何结果的减基近近近值。我们证明,这种有机线点通过采用联合方法是完全可行的,该方法在可接受性限制和不线性赤道 OCP的情况下也起作用,因此比传统的Lagrangian方法更为一般。我们还表明,在构建这些减序模型的过程中迈出了一步,称为聚合步骤,不是基本步骤,原则上可以因非分解非分解问题而导致更廉价的在线阶段。我们考虑了环境科学三种情景中的数值应用,其中的调控PDE是稳定的,控制是分布的。采用了各种参数分布,并按不同比例选择了加权正正正正正调调调调调调调的度规则。

0
下载
关闭预览

相关内容

【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
专知会员服务
41+阅读 · 2021年4月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
3+阅读 · 2019年11月25日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年11月25日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员