A fundamental concept in control theory is that of controllability, where any system state can be reached through an appropriate choice of control inputs. Indeed, a large body of classical and modern approaches are designed for controllable linear dynamical systems. However, in practice, we often encounter systems in which a large set of state variables evolve exogenously and independently of the control inputs; such systems are only \emph{partially controllable}. The focus of this work is on a large class of partially controllable linear dynamical systems, specified by an underlying sparsity pattern. Our main results establish structural conditions and finite-sample guarantees for learning to control such systems. In particular, our structural results characterize those state variables which are irrelevant for optimal control, an analysis which departs from classical control techniques. Our algorithmic results adapt techniques from high-dimensional statistics -- specifically soft-thresholding and semiparametric least-squares -- to exploit the underlying sparsity pattern in order to obtain finite-sample guarantees that significantly improve over those based on certainty-equivalence. We also corroborate these theoretical improvements over certainty-equivalent control through a simulation study.
翻译:控制理论中的一个基本概念是控制性, 任何系统状态都可以通过适当的控制投入选择来实现。 事实上, 大量的古典和现代方法是为可控制的线性动态系统设计的。 然而,在实践中,我们经常遇到大量状态变量在外向和独立于控制投入的情况下演进的系统; 这些系统仅是 \ emph{ 部分控制 } 。 这项工作的焦点是一大批可部分控制线性动态系统, 由一种潜在的扰动模式加以规定。 我们的主要结果为学习控制这些系统规定了结构条件和有限的抽样保障。 特别是, 我们的结构结果说明了那些与最佳控制无关的状态变量, 一种与传统控制技术不同的分析。 我们的算法结果调整了从高维统计中得出的技术, 特别是软持有和半对称最小质量的技术, 以便利用基础的紧张性模式, 以获得基于确定性对等度的保证大大改进。 我们还通过模拟研究, 证实了这些关于确定性控制的理论上的改进。