The CSP dichotomy conjecture has been recently established, but a number of other dichotomy questions remain open, including the dichotomy classification of list homomorphism problems for signed graphs. Signed graphs arise naturally in many contexts, including for instance nowhere-zero flows for graphs embedded in non-orientable surfaces. For a fixed signed graph $\widehat{H}$, the list homomorphism problem asks whether an input signed graph $\widehat{G}$ with lists $L(v) \subseteq V(\widehat{H}), v \in V(\widehat{G}),$ admits a homomorphism $f$ to $\widehat{H}$ with all $f(v) \in L(v), v \in V(\widehat{G})$. Usually, a dichotomy classification is easier to obtain for list homomorphisms than for homomorphisms, but in the context of signed graphs a structural classification of the complexity of list homomorphism problems has not even been conjectured, even though the classification of the complexity of homomorphism problems is known. Kim and Siggers have conjectured a structural classification in the special case of "weakly balanced" signed graphs. We confirm their conjecture for reflexive and irreflexive signed graphs; this generalizes previous results on weakly balanced signed trees, and weakly balanced separable signed graphs. In the reflexive case, the result was first presented in a paper of Kim and Siggers, where the proof relies on a result in this paper. The irreflexive result is new, and its proof depends on first deriving a theorem on extensions of min orderings of (unsigned) bipartite graphs, which is interesting on its own.


翻译:CSP 的二分法猜想最近才刚刚建立,但其他一些二分法问题仍未解决,包括签名图形的列表同质性问题的二分法分类。 签名图形在很多情况下自然出现, 例如, 嵌入非可调整表面的图形无处- 零流。 对于固定签名的图形 $\ bloyhat{H}$, 列表同质性问题询问, 是否有一个输入签名的图形 $\ bloyhat{G}$ 与列表 $L( v)\ subseteq V( bloyhat{H}), v v (\ bloyhat{G}) ), v v (v) V (widehat{G}) ), vrationaldgroupformorms 。 在签名的图解算中, 已经签名的金正反正反正反正反正的金正反正反正反正反正反正反正反正反正, 在所签的图中, 我们所签的正正正正反正的图结果是已知的。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年9月17日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员