Accurate modelling of the joint extremal dependence structure within a stationary time series is a challenging problem that is important in many applications.\ Several previous approaches to this problem are only applicable to certain types of extremal dependence in the time series such as asymptotic dependence, or Markov time series of finite order.\ In this paper, we develop statistical methodology for time series extremes based on recent probabilistic results that allow us to flexibly model the decay of a stationary time series after witnessing an extreme event.\ While Markov sequences of finite order are naturally accommodated by our approach, we consider a broader setup, based on the conditional extreme value model, which allows for a wide range of possible dependence structures in the time series.\ We consider inference based on Monte Carlo simulation and derive an upper bound for the variance of a commonly used importance sampler.\ Our methodology is illustrated via estimation of cluster functionals in simulated data and in a time series of daily maximum temperatures from Orleans, France.
翻译:在一个固定时间序列内对联合极端依赖性结构的精确建模是一个具有挑战性的问题,在许多应用中都很重要。 。 。 。 。 。 一些先前的处理该问题的办法只适用于时间序列中某些类型的极端依赖性,例如:亚麻疯依赖性,或Markov时间序列的定时顺序。 。 在本文件中,我们根据最近的概率结果,为时间序列极端制定统计方法,使我们能够在目睹极端事件后灵活建模固定时间序列的衰变。 \ 虽然我们的方法自然地适应了Markov定序的定序,但我们认为,以有条件的极端价值模型为基础,在时间序列中允许广泛的可能依赖性结构。 \ 我们考虑基于蒙特卡洛模拟的推理,并得出一个常用重要取样器差异的上限。 \ 我们的方法是通过模拟数据中对集功能的估计和法国奥尔良每日最高温度的时间序列来说明。</s>