Blockchain performance has historically faced challenges posed by the throughput limitations of consensus algorithms. Recent breakthroughs in research have successfully alleviated these constraints by introducing a modular architecture that decouples consensus from execution. The move toward independent optimization of the consensus layer has shifted attention to the execution layer. While concurrent transaction execution is a promising solution for increasing throughput, practical challenges persist. Its effectiveness varies based on the workloads, and the associated increased hardware requirements raise concerns about undesirable centralization. This increased requirement results in full nodes and stragglers synchronizing from signed checkpoints, decreasing the trustless nature of blockchain systems. In response to these challenges, this paper introduces Chiron, a system designed to extract execution hints for the acceleration of straggling and full nodes. Notably, Chiron achieves this without compromising the security of the system or introducing overhead on the critical path of consensus. Evaluation results demonstrate a notable speedup of up to 30%, effectively addressing the gap between theoretical research and practical deployment. The quantification of this speedup is achieved through realistic blockchain benchmarks derived from a comprehensive analysis of Ethereum and Solana workloads, constituting an independent contribution.
翻译:暂无翻译