We provide a general framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems, which aim at estimating unknown parameter of the true distribution given adversarially corrupted samples. Prior work focus on the problem of robust mean and covariance estimation when the true distribution lies in the family of Gaussian distributions or elliptical distributions, and analyze depth or scoring rule based GAN losses for the problem. Our work extend these to robust mean estimation, second moment estimation, and robust linear regression when the true distribution only has bounded Orlicz norms, which includes the broad family of sub-Gaussian, sub-Exponential and bounded moment distributions. We also provide a different set of sufficient conditions for the GAN loss to work: we only require its induced distance function to be a cumulative density function of some light-tailed distribution, which is easily satisfied by neural networks with sigmoid activation. In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance, which overcomes the computational intractability of the original Kolmogorov-Smirnov distance used in the prior work.


翻译:我们提供了一个总体框架,用于设计基因反向网络(GANs),以解决高维的可靠统计问题,目的是估计在对抗性腐蚀样品的情况下真实分布的未知参数; 先前的工作重点是在Gaussian分布或椭圆分布的家族中真实分布时的稳健平均和共变估计问题; 分析基于基于GAN的深度或评分规则的这一问题损失; 我们的工作范围扩大到强势平均估计、 第二次估计和强势的线性回归,而真正的分布仅与Orlicz规范相联,包括亚伽西、亚消耗性和约束性瞬间分布的宽大家庭; 我们还为GAN损失的工作提供了一套不同的充分条件:我们只需要它的诱发距离功能成为某些轻尾分布的累积密度函数,而神经网络很容易用模拟激活来满足这一点。 在技术方面,我们提议的GAN损失可视为一种平滑和普遍化的Kolmogorov-Smirnov距离,从而克服了最初使用的Kol-stal-stal-traftable的距离。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员