This article gives a solid theoretical grounding to the observation that cubical structures arise naturally when working with parametricity. We claim that cubical models are cofreely parametric. We use categories, lex categories or clans as models of type theory. In this context we define notions of parametricity as monoidal models, and parametric models as modules. This covers not only the usual parametricity where any type comes with a relation, but also variants where it comes with a predicate, a reflexive relation, two relations, and many more. In this setting we prove that forgetful functors from parametric models to arbitrary ones have left and right adjoints. Moreover we give explicit compact descriptions for these freely and cofreely parametric models. Then we give many examples of notion of parametricity, allowing to build the following as cofreely parametric models: - Categories of cubical objects for any variant of cube. - Lex categories of truncated semi-cubical (or cubical with reflexivities only) objects. - Clans of Reedy fibrant semi-cubical (or cubical with reflexivities only) objects.
翻译:本条从理论角度为以下观察提供了坚实的理论依据:在与参数有关的情况下,立方结构自然地产生。我们声称立方模型是共同的参数。我们使用类别、法类或族系作为类型理论的模型。在这方面,我们把准数概念定义为单线模型,参数模型作为模块。这不仅包括任何类型与某种关系相关时通常的参数,而且还包括与上游、反射关系、两种关系和许多其他关系有关的变量。在这个背景下,我们证明从参数模型到任意模型的遗忘式替代物有左侧和右侧连接。我们对这些自由的准数模型作了明确的缩缩略图。然后,我们举了许多参数概念的例子,允许将以下概念建起为共同的准数模型: - 任何立方体变体的立体物体的分类。 - 三角半立体半立体(或仅具有反射特性的立方体)物体的分类。 - Reedy fribrient 半立方体(或仅具有反射性的立方体的立方体)物体的分类。