This article gives a solid theoretical grounding to the observation that cubical structures arise naturally when working with parametricity. We claim that cubical models are cofreely parametric. We use categories, lex categories or clans as models of type theory. In this context we define notions of parametricity as monoidal models, and parametric models as modules. This covers not only the usual parametricity where any type comes with a relation, but also variants where it comes with a predicate, a reflexive relation, two relations, and many more. In this setting we prove that forgetful functors from parametric models to arbitrary ones have left and right adjoints. Moreover we give explicit compact descriptions for these freely and cofreely parametric models. Then we give many examples of notion of parametricity, allowing to build the following as cofreely parametric models: - Categories of cubical objects for any variant of cube. - Lex categories of truncated semi-cubical (or cubical with reflexivities only) objects. - Clans of Reedy fibrant semi-cubical (or cubical with reflexivities only) objects.


翻译:本条从理论角度为以下观察提供了坚实的理论依据:在与参数有关的情况下,立方结构自然地产生。我们声称立方模型是共同的参数。我们使用类别、法类或族系作为类型理论的模型。在这方面,我们把准数概念定义为单线模型,参数模型作为模块。这不仅包括任何类型与某种关系相关时通常的参数,而且还包括与上游、反射关系、两种关系和许多其他关系有关的变量。在这个背景下,我们证明从参数模型到任意模型的遗忘式替代物有左侧和右侧连接。我们对这些自由的准数模型作了明确的缩缩略图。然后,我们举了许多参数概念的例子,允许将以下概念建起为共同的准数模型: - 任何立方体变体的立体物体的分类。 - 三角半立体半立体(或仅具有反射特性的立方体)物体的分类。 - Reedy fribrient 半立方体(或仅具有反射性的立方体的立方体)物体的分类。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
0+阅读 · 2022年10月14日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员