项目名称: 掺杂多铁材料BiFeO3的结构稳定性研究

项目编号: No.11475212

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 陈栋梁

作者单位: 中国科学院高能物理研究所

项目金额: 94万元

中文摘要: 多铁材料是同时具有两种或两种以上铁序(如铁电序、铁磁/反铁磁序和铁弹序)的新型功能材料,而BiFeO3是迄今为止发现的唯一在室温下具有铁电和铁磁性的单相多铁材料。特别是BiFeO3的掺杂改性,使其在铁序的起源和耦合机制等基础研究方面以及潜在的应用方面都表现出巨大的价值,成为多铁材料的研究模型,得到了人们广泛的关注。本项目拟利用X射线吸收谱和X射线衍射,结合多重散射从头计算和第一性原理计算等系统研究溶胶凝胶法制备BiFeO3的A位的稀土元素(La,Nd,Sm,Gd和Dy等)掺杂和B位的过渡金属元素(Mn,Cr,Co,Ni等)掺杂之后的结构及其稳定性。分析掺杂诱导纳米尺度区域结构相变的特点和形成机理,明确与掺杂元素种类和掺杂浓度的依赖关系,以及对铁序及耦合效应的影响,从新的视角探讨理解多铁材料BiFeO3的掺杂造成的铁序和耦合效应的变化的起因。

中文关键词: 多铁材料;铁酸铋;结构稳定性;掺杂诱导纳米尺度结构相变;X射线吸收谱

英文摘要: Multiferroic material is of new functional material simultaneously with two or more ferroic orders, such as ferroelectric order, ferromagnetic/antiferromagnetic order and ferroelastic order, and so far BiFeO3 is the only single-phase multiferroic material simultaneously with ferroelectric and ferromagnetic at room temperature. In particular, doped-BiFeO3, as a research model, has been widespread concern because it would modify the ferroic orders and coupling mechanism and has shown great value on the fundamental research as well as potential application. This project intends, using the X-ray absorption spectroscopy and X-ray diffraction, combined with multiple scattering ab initio calculation and first principle calculation, etc., to investigate systematically the structure and its stability of BiFeO3 doped by REE (La, Nd, Sm, Gd, and Dy, etc.) at site-A and by transition metal elements ( Mn, Cr, Co, and Ni, etc.) at site-B, fabricated by sol-gel method. We will analyze the characteristics and formation mechanism of doping-induced structural phase transition of nanoscale region, and will clarify the dependence of doping element type and doping concentration, as well as the impact on ferroic orders and coupling effects. The results will provide a new perspective to understand the origin and changes of ferroic orders and coupling effects caused by doped BiFeO3.

英文关键词: Multiferroic material;BiFeO3;structural stability;doping-induced nanoscale structure phase transition;XAFS

成为VIP会员查看完整内容
0

相关内容

专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
209+阅读 · 2021年8月2日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
28+阅读 · 2020年8月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
46+阅读 · 2021年10月4日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
209+阅读 · 2021年8月2日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员