We aim to diagnose the potential biases in image classifiers. To this end, prior works manually labeled biased attributes or visualized biased features, which need high annotation costs or are often ambiguous to interpret. Instead, we leverage two types (generative and discriminative) of pre-trained vision-language models to describe the visual bias as a word. Specifically, we propose bias-to-text (B2T), which generates captions of the mispredicted images using a pre-trained captioning model to extract the common keywords that may describe visual biases. Then, we categorize the bias type as spurious correlation or majority bias by checking if it is specific or agnostic to the class, based on the similarity of class-wise mispredicted images and the keyword upon a pre-trained vision-language joint embedding space, e.g., CLIP. We demonstrate that the proposed simple and intuitive scheme can recover well-known gender and background biases, and discover novel ones in real-world datasets. Moreover, we utilize B2T to compare the classifiers using different architectures or training methods. Finally, we show that one can obtain debiased classifiers using the B2T bias keywords and CLIP, in both zero-shot and full-shot manners, without using any human annotation on the bias.


翻译:我们的目标是分析图像分类中的潜在偏差。 为此, 先前的手动手动将偏差属性或视觉偏差特征贴上标签, 需要高注解成本或往往难以解释。 相反, 我们利用两种( 遗传的和歧视性的) 预培训前的视觉语言模型来将视觉偏差描述成单词。 具体地说, 我们提出偏差- 文本( B2T), 产生错误图像的字幕, 使用预先培训的字幕模型来提取描述视觉偏差的通用关键词。 然后, 我们使用 B2T 将偏差类型归类为虚假的关联性或多数偏差, 检查其是否具体或不可知性。 我们根据类别错误图像的相似性, 以及预培训前的视觉语言联合嵌入空间( 例如 CLIP) 的关键词。 我们证明, 拟议的简单和直觉的图案可以恢复众所周知的性别和背景偏差, 并在现实世界数据集中发现新的偏差。 此外, 我们使用 B2T 使用不同的结构或培训方法, 来比较分类者,, 并且在不使用完全的 C- brialimers 和 C- hash- hustaged 中, 我们展示 使用 任何 使用 的 的 和整个 的 C- dirmagial 。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
47+阅读 · 2022年10月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
13+阅读 · 2021年3月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员