Multigrid solvers for hierarchical hybrid grids (HHG) have been proposed to promote the efficient utilization of high performance computer architectures. These HHG meshes are constructed by uniformly refining a relatively coarse fully unstructured mesh. While HHG meshes provide some flexibility for unstructured applications, most multigrid calculations can be accomplished using efficient structured grid ideas and kernels. This paper focuses on generalizing the HHG idea so that it is applicable to a broader community of computational scientists, and so that it is easier for existing applications to leverage structured multigrid components. Specifically, we adapt the structured multigrid methodology to significantly more complex semi-structured meshes. Further, we illustrate how mature applications might adopt a semi-structured solver in a relatively non-invasive fashion. To do this, we propose a formal mathematical framework for describing the semi-structured solver. This formalism allows us to precisely define the associated multigrid method and to show its relationship to a more traditional multigrid solver. Additionally, the mathematical framework clarifies the associated software design and implementation. Numerical experiments highlight the relationship of the new solver with classical multigrid. We also demonstrate the generality and potential performance gains associated with this type of semi-structured multigrid.


翻译:提出了用于等级混合电网(HHG)的多重电网解决方案,以促进高效使用高性能多功能计算机结构。这些HHG网格的构建方式是统一地改进一个相对粗糙的完全无结构的网格。虽然HHG网格为非结构化应用程序提供了一些灵活性,但大多数多格网格计算可以使用高效结构化的网格想法和内核完成。本文侧重于对HHG的理念进行概括化,使之适用于更广泛的计算科学家群体,从而使现有应用程序更容易利用结构化多功能网格组件。具体地说,我们将结构化的多网格方法调整到相当复杂的半结构型网格网格网。此外,我们演示了成熟应用程序如何以相对非入侵的方式采用半结构化的解决方案。为了做到这一点,我们提出了一个描述半结构化电网格解决方案的正规数学框架。这种形式主义使我们能够精确地界定相关的多格方法,并显示它与更传统的多格网格解决方案的解决方案。此外,我们还将相关的软件设计和实施加以澄清。Numerical实验突出了与新解决方案类型模型的绩效之间的关系。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员