Masked language modeling (MLM) plays a key role in pretraining large language models. But the MLM objective is often dominated by high-frequency words that are sub-optimal for learning factual knowledge. In this work, we propose an approach for influencing MLM pretraining in a way that can improve language model performance on a variety of knowledge-intensive tasks. We force the language model to prioritize informative words in a fully unsupervised way. Experiments demonstrate that the proposed approach can significantly improve the performance of pretrained language models on tasks such as factual recall, question answering, sentiment analysis, and natural language inference in a closed-book setting.


翻译:掩码语言建模(MLM)在预训练大型语言模型中扮演关键角色。但MLM目标通常被高频词占据,对于学习事实知识不够优化。在本研究中,我们提出了一种影响MLM预训练的方法,以提高语言模型在各种知识密集型任务上的性能。我们以完全无监督的方式强制语言模型优先考虑信息量大的词。实验表明,所提出的方法可以显著提高预训练语言模型在事实回忆,问答,情感分析和自然语言推断等封闭式任务中的性能。

0
下载
关闭预览

相关内容

知识增强预训练语言模型:全面综述
专知会员服务
89+阅读 · 2021年10月19日
专知会员服务
29+阅读 · 2021年6月15日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
EMNLP 2022 | 校准预训练模型中的事实知识
PaperWeekly
1+阅读 · 2022年11月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关VIP内容
知识增强预训练语言模型:全面综述
专知会员服务
89+阅读 · 2021年10月19日
专知会员服务
29+阅读 · 2021年6月15日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
相关资讯
EMNLP 2022 | 校准预训练模型中的事实知识
PaperWeekly
1+阅读 · 2022年11月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员