We propose an unsupervised image fusion architecture for multiple application scenarios based on the combination of multi-scale discrete wavelet transform through regional energy and deep learning. To our best knowledge, this is the first time the conventional image fusion method has been combined with deep learning. The useful information of feature maps can be utilized adequately through multi-scale discrete wavelet transform in our proposed method.Compared with other state-of-the-art fusion method, the proposed algorithm exhibits better fusion performance in both subjective and objective evaluation. Moreover, it's worth mentioning that comparable fusion performance trained in COCO dataset can be obtained by training with a much smaller dataset with only hundreds of images chosen randomly from COCO. Hence, the training time is shortened substantially, leading to the improvement of the model's performance both in practicality and training efficiency.


翻译:我们建议为多种应用情景建立一个不受监督的图像聚合结构,其依据是多尺度离散波子通过区域能量和深层学习转化的组合。 据我们所知,这是第一次将常规图像聚合方法与深层学习相结合。通过我们拟议方法中的多尺度离散波子转换,可以充分利用地貌图的有用信息。与其他最先进的组合方法相比,拟议的算法在主观和客观评估中都表现出更好的融合性能。此外,值得指出的是,通过仅从COCOO随机选取数百张图像的更小的数据集培训,可以取得在COCO数据集中培训的可比融合性能。因此,培训时间大大缩短,从而在实用性和培训效率两方面都提高了模型的性能。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年9月29日
Arxiv
7+阅读 · 2020年3月1日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
4+阅读 · 2017年11月4日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员