Text-based person re-identification (ReID) aims to identify images of the targeted person from a large-scale person image database according to a given textual description. However, due to significant inter-modal gaps, text-based person ReID remains a challenging problem. Most existing methods generally rely heavily on the similarity contributed by matched word-region pairs, while neglecting mismatched word-region pairs which may play a decisive role. Accordingly, we propose to mine false positive examples (MFPE) via a jointly optimized multi-branch architecture to handle this problem. MFPE contains three branches including a false positive mining (FPM) branch to highlight the role of mismatched word-region pairs. Besides, MFPE delicately designs a cross-relu loss to increase the gap of similarity scores between matched and mismatched word-region pairs. Extensive experiments on CUHK-PEDES demonstrate the superior effectiveness of MFPE. Our code is released at https://github.com/xx-adeline/MFPE.
翻译:以文字为基础的个人再识别(ReID)旨在根据特定文字描述,从大型个人图像数据库中确定目标对象的图像,然而,由于基于文字的人再识别(ReID)仍是一个具有挑战性的问题,大多数现有方法一般都严重依赖匹配的字区对配对所促成的相似性,而忽略了可能起决定性作用的不匹配的字区对配。因此,我们提议通过联合优化的多部门结构,用处理该问题的多部门结构,来挖掘虚假的正面范例(MFPE)。MFPE包含三个分支,包括一个虚假的正面采矿(FPM)分支,以突出不匹配的字区对的作用。此外,MFPE精心设计了一种交叉损失,以增加匹配和不匹配的字区对配对之间的相似性分数差距。CUHK-PEDES的广泛实验展示了MFPE的优越性。我们的代码在https://github.com/xx-adeline/MFPE中发布。</s>