A nonlinear adaptive procedure for optimising both the schemes in time and space is proposed in view of increasing the numerical efficiency and reducing the computational time. The method is based on a four-parameter family of schemes we shall tune in function of the physical data (velocity, diffusion), the characteristic size in time and space, and the local regularity of the function leading to a nonlinear procedure. The \textit{a posteriori} strategy we adopt consists in, given the solution at time $t^n$, computing a candidate solution with the highest accurate schemes in time and space for all the nodes. Then, for the nodes that present some instabilities, both the schemes in time and space are modified and adapted in order to preserve the stability with a large time step. The updated solution is computed with node-dependent schemes both in time and space. For the sake of simplicity, only convection-diffusion problems are addressed as a prototype with a two-parameters five-points finite difference method for the spatial discretisation together with an explicit time two-parameters four-stages Runge-Kutta method. We prove that we manage to obtain an optimal time-step algorithm that produces accurate numerical approximations exempt of non-physical oscillations.
翻译:为了提高数字效率和减少计算时间,提议了一个在时间和空间上优化两种方案的非线性适应程序,以提高数字效率和缩短计算时间和空间。该方法基于四个参数的组合,我们应调整物理数据(速度、扩散、时间和空间的特征大小,以及导致非线性程序的功能的当地规律性。我们采用的方法包括:考虑到时间的解决方案,计算一个候选人解决方案,在时间和空间上采用最准确的系统,为所有节点提供最及时、最准确的系统。然后,对于显示某些不稳定性的节点,对时间和空间的两种方案都进行了修改和调整,以保持较大时间步骤的稳定性。更新的解决方案是用时间和空间上不依赖的系统来计算。为了简单起见,我们仅用一个具有两度的5点定点差异的原型来解决溶解问题,同时使用明确的两度的两度空间离差法,同时使用明确的两度的两度的四级-K级分法,我们用最精确的时间步骤来管理最精确的模型。