We introduce a new method for the numerical approximation of time-harmonic acoustic scattering problems stemming from material inhomogeneities. The method works for any frequency $\omega$, but is especially efficient for high-frequency problems. It is based on a time-domain approach and consists of three steps: \emph{i)} computation of a suitable incoming plane wavelet with compact support in the propagation direction; \emph{ii)} solving a scattering problem in the time domain for the incoming plane wavelet; \emph{iii)} reconstruction of the time-harmonic solution from the time-domain solution via a Fourier transform in time. An essential ingredient of the new method is a front-tracking mesh adaptation algorithm for solving the problem in \emph{ii)}. By exploiting the limited support of the wave front, this allows us to make the number of the required degrees of freedom to reach a given accuracy significantly less dependent on the frequency $\omega$, as shown in the numerical experiments. We also present a new algorithm for computing the Fourier transform in \emph{iii)} that exploits the reduced number of degrees of freedom corresponding to the adapted meshes.
翻译:我们引入了一种新方法, 用于对来自材料不相容性的时间- 调和声波散落问题进行数字近似。 这种方法对任何频率都有效 $\ omega$, 但对于高频问题特别有效 。 它基于时间- 域法, 由三个步骤组成 :\ emph{ (i)} 计算一个合适的来机波波波, 在传播方向上提供紧凑支持 ;\ emph{ (ii) } 解决即将到来的波波波波在时间范围内的散落问题 ; \ emph{ (iii)} 重建时间- 时间- 调和解决方案, 通过时间变换 Fourier 。 新方法的一个基本要素是用于解决 \ emph{ (ii)} 中问题的一个前轨的网格调整算算算算算法。 通过利用波前端的有限支持, 使得我们能够使达到给定的准确度所需的自由度数量大大降低对 $\ omga$ 的频率的依赖 。 我们还提出了一个新的算算算法, 将 4er 变换成/ emphshex 。