In this work, we propose to efficently solve time dependent parametrized optimal control problems governed by parabolic partial differential equations through the certified reduced basis method. In particular, we will exploit an error estimator procedure, based on easy-to-compute quantities which guarantee a rigorous and efficient bound for the error of the involved variables. First of all, we propose the analysis of the problem at hand, proving its well-posedness thanks to Ne\v{c}as - Babu\v{s}ka theory for distributed and boundary controls in a space-time formulation. Then, we derive error estimators to apply a Greedy method during the offline stage, in order to perform, during the online stage, a Galerkin projection onto a low-dimensional space spanned by properly chosen high-fidelity solutions. We tested the error estimators on two model problems governed by a Graetz flow: a physical parametrized distributed optimal control problem and a boundary optimal control problem with physical and geometrical parameters. The results have been compared to a previously proposed bound, based on the exact computation of the Babu\v ska inf-sup constant, in terms of reliability and computational costs. We remark that our findings still hold in the steady setting and we propose a brief insight also for this simpler formulation.


翻译:在这项工作中,我们建议通过经认证的减少基数方法,彻底解决由抛物线部分偏差方程管辖的基于时间的平衡最佳控制问题。特别是,我们将利用一个基于简单和简单计算的数量的误差估计程序,保证对所涉变量的误差进行严格和有效的约束。首先,我们提议分析手头的问题,通过Ne\v{c}as-Babu\v{s}ka理论,证明其在空间-时间制成的分布和边界控制方面拥有良好的控制能力。然后,我们得出误差估计器,以便在离线阶段采用贪婪方法,以便在网上阶段对低维空间进行加勒金投影,通过适当选择高不毛性解决方案进行严格和有效的控制。我们测试了由Graetz流管理的两个模型问题的误算器:一种物理对称的分布最佳控制问题,以及一种带有物理和几何参数的边界最佳控制问题。我们把结果与先前提出的在离线阶段应用的偏差法方法进行了比较,以便在网上阶段对低维空间空间空间进行精确的预测,以便根据我们固定的精确的精确的精确的精确的精确的计算结果进行我们的精确的计算。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员