The problem of Sequential Estimation under Multiple Resources (SEMR) is defined in a federated setting. SEMR could be considered as the intersection of statistical estimation and bandit theory. In this problem, an agent is confronting with k resources to estimate a parameter $\theta$. The agent should continuously learn the quality of the resources by wisely choosing them and at the end, proposes an estimator based on the collected data. In this paper, we assume that the resources' distributions are Gaussian. The quality of the final estimator is evaluated by its mean squared error. Also, we restrict our class of estimators to unbiased estimators in order to define a meaningful notion of regret. The regret measures the performance of the agent by the variance of the final estimator in comparison to the optimal variance. We propose a lower bound to determine the fundamental limit of the setting even in the case that the distributions are not Gaussian. Also, we offer an order-optimal algorithm to achieve this lower bound.


翻译:多重资源(SEMR) 下的序列估算问题在联盟环境下被定义。 SEMR 可以被视为统计估计和土匪理论的交叉点。 在这个问题上, 代理商面临着用于估算一个参数$\theta$的 k 资源。 代理商应该通过明智地选择这些参数来不断了解资源的质量。 代理商应该根据所收集的数据在最后建议一个估算器。 在本文中, 我们假设资源的分配是高山的。 最后估计器的质量要根据其平均的平方错误来评估。 另外, 我们将我们的类估算器限于公正的估算器, 以便界定一个有意义的遗憾概念。 遗憾地是测量器的性能, 与最佳差异相比, 最后估计器的性能有差异。 我们提出一个更低的界限, 以便确定即使分布不是高斯扬的, 也确定环境的基本限制。 另外, 我们提出一个有条理的优化的算法, 以达到这个更低的界限。

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年11月20日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员