It is a common phenomenon that for high-dimensional and nonparametric statistical models, rate-optimal estimators balance squared bias and variance. Although this balancing is widely observed, little is known whether methods exist that could avoid the trade-off between bias and variance. We propose a general strategy to obtain lower bounds on the variance of any estimator with bias smaller than a prespecified bound. This shows to which extent the bias-variance trade-off is unavoidable and allows to quantify the loss of performance for methods that do not obey it. The approach is based on a number of abstract lower bounds for the variance involving the change of expectation with respect to different probability measures as well as information measures such as the Kullback-Leibler or chi-square-divergence. Some of these inequalities rely on a new concept of information matrices. In a second part of the article, the abstract lower bounds are applied to several statistical models including the Gaussian white noise model, a boundary estimation problem, the Gaussian sequence model and the high-dimensional linear regression model. For these specific statistical applications, different types of bias-variance trade-offs occur that vary considerably in their strength. For the trade-off between integrated squared bias and integrated variance in the Gaussian white noise model, we combine the general strategy for lower bounds with a reduction technique. This allows us to link the original problem to the bias-variance trade-off for estimators with additional symmetry properties in a simpler statistical model. In the Gaussian sequence model, different phase transitions of the bias-variance trade-off occur. Although there is a non-trivial interplay between bias and variance, the rate of the squared bias and the variance do not have to be balanced in order to achieve the minimax estimation rate.
翻译:对于高度和非对称统计模型来说,一个常见的现象是,对高度和非偏差统计模型来说,最高至最佳估计值平衡了正方偏差和差异。虽然这种平衡得到了广泛观察,但对于是否存在可以避免偏差和偏差权衡的方法却知之甚少。我们提出了一个总体战略,以任何偏差小于预设界限的估测值差异获得较低的界限。这显示了偏差偏差交易取舍的不可避免程度,并允许对不执行方法的性能损失进行量化。这一方法基于差异的若干抽象下限,包括不同概率的预期变化,与不同概率的度度度度度度测量值的预期变化,以及诸如 Kullackack-Lebacker 或 chi-squarre-digence 等信息衡量标准。有些不平等依赖于一个新的信息矩阵概念。在文章的第二部分,偏差偏差交易的抽象下限适用于若干统计模型,包括高比的白噪音模型、边界估测算问题、高度测算序列模型和高位线回归模型。对于这些具体的统计应用来说,在不同的统计模型中,不同程度的偏差性交易的变差战略是不同的。我们之间,在整体变差和平整变差战略中会发生。