We study and develop the stochastic Markov reward model (sMRM), which extends the Markov chain where transition time/reward as modelled as random variables. Techniques are presented to enable computing first-passage time distributions (or reward distributions) with high accuracy for only modestly sized systems when solved for on a single computer. In contrast, naive simulations technique scale and are sufficient for a plethora of problems where high accuracy is not an issue, but this work perhaps would be valuable when extremely accurate solutions are demanded if it can be modelled precisely (a potentially big caveat). The work presented is intertwined with theory of temporal logics, although not the major contribution of the work, achieves the connection of this work to the field of automated probabilistic analysis/verification. Although its admittance does obfuscate the algorithmic details that are major, however. We present equations for computing first-passage reward densities, expected value problems, and other reachability problems. The focus was on finding strictly numerical solutions for first-passage time/reward densities. We adapted linear algebra algorithms such as Gaussian elimination, and iterative methods such as the power method, Jacobi and Gauss-Seidel. We provide solutions for both discrete-reward sMRMs, where all rewards discrete (lattice) random variables. And for continuous-reward sMRMs, where all rewards are strictly continuous random variables. Our solutions involve the use of fast Fourier transform (FFT) for faster computation, and we were able to adapt existing quadrature rules for convolution to gain more accurate solutions, rules such as the trapezoid rule, Simpson's rule and Romberg's method.
翻译:我们研究并开发了Stochacistic Markov奖赏模式(sMRM ), 该模式扩展了Markov 链条的过渡时间/回报模式, 该链条的过渡时间/回报模式仿照随机变量的模式。 展示了各种技术, 使得在为单一计算机解答时, 只能对小小的系统进行高精度的计算, 只对小的系统提供高精度分配( 或奖赏分配 ) 。 相反, 天真的模拟技术规模, 足以解决大量问题, 高精度不是一个问题, 但是, 如果需要非常准确的解决方案, 如果能够精确地模拟( 可能是一个巨大的警告 ), 这项工作与时间逻辑理论交织, 虽然不是工作的主要贡献, 但是, 能够实现这项工作与自动概率分析/ 校正值分析/ 的领域连接。 虽然它的接受性模拟规模, 但是, 我们提出计算第一流度奖赏、 预期价值问题和其他可达度问题的公式。 重点是为第一次访问/ 时间/ 斜度 找到严格的数字解决方案 。 我们的计算方法, 直线型的平面的平面的平流的变法, 包括高压的变变法, 高压的变法,, 以高压的变法,, 我们的变的变法, 以高压的变的变法, 以高压的变的变法, 等的变法, 我们的变法, 的变的变法, 的变的变的变的变的变法, 等的变法, 等的变法, 的变法, 的变法, 的变法, 我们的变法, 的变法, 的变的变法, 的变法, 的变法, 的变的变法, 的变法, 的变法, 的变法, 的变法的变法, 的变法, 的变法, 的变法, 的变法, 的变法, 的变的变的变的变的变法, 的变的变的变的变法, 的变法,例如高的变法,例如高的变的变的变法,例如高的变法,例如高的变法