Automatically discovering a process model from an event log is the prime problem in process mining. This task is so far approached as an unsupervised learning problem through graph synthesis algorithms. Algorithmic design decisions and heuristics allow for efficiently finding models in a reduced search space. However, design decisions and heuristics are derived from assumptions about how a given behavioral description - an event log - translates into a process model and were not learned from actual models which introduce biases in the solutions. In this paper, we explore the problem of supervised learning of a process discovery technique D. We introduce a technique for training an ML-based model D using graph convolutional neural networks; D translates a given input event log into a sound Petri net. We show that training D on synthetically generated pairs of input logs and output models allows D to translate previously unseen synthetic and several real-life event logs into sound, arbitrarily structured models of comparable accuracy and simplicity as existing state of the art techniques for discovering imperative process models. We analyze the limitations of the proposed technique and outline alleys for future work.
翻译:从事件日志中自动发现一个过程模型是过程采矿过程中的主要问题。 这项任务迄今为止是通过图形合成算法作为不受监督的学习问题处理的。 算术设计决定和湿度学使得在搜索空间缩小的情况下能够有效地找到模型。 但是,设计决定和疲劳学来自对特定行为描述(事件日志)如何转化为过程模型的假设,而没有从引入偏向解决方案的实际模型中学习。 在本文中,我们探讨了以监督方式学习过程发现技术D的问题。 我们采用了一种技术,用图形共振神经网络来培训以 ML为基础的模型D 。 D 将给定输入事件日志转换成声音波特瑞网络。 我们显示,关于合成生成的输入日志和输出模型的D培训可以使D将以前看不见的合成和若干实际生命事件日志转换为与发现必要进程模型的现有艺术技术状态相似的、任意结构化的准确性和简单性模型。 我们分析了拟议技术的局限性,并为未来工作概述了小巷子。