Associated to a finite measure on the real line with finite moments are recurrence coefficients in a three-term formula for orthogonal polynomials with respect to this measure. These recurrence coefficients are frequently inputs to modern computational tools that facilitate evaluation and manipulation of polynomials with respect to the measure, and such tasks are foundational in numerical approximation and quadrature. Although the recurrence coefficients for classical measures are known explicitly, those for nonclassical measures must typically be numerically computed. We survey and review existing approaches for computing these recurrence coefficients for univariate orthogonal polynomial families and propose a novel "predictor-corrector" algorithm for a general class of continuous measures. We combine the predictor-corrector scheme with a stabilized Lanczos procedure for a new hybrid algorithm that computes recurrence coefficients for a fairly wide class of measures that can have both continuous and discrete parts. We evaluate the new algorithms against existing methods in terms of accuracy and efficiency.


翻译:这些复发系数经常是现代计算工具的投入,有助于评估和操纵该计量的多数值,而这种任务在数值近似值和二次曲线上具有基本意义。虽然古典计量的复发系数是明确已知的,但非古典计量的复发系数一般必须是数字计算的。我们调查并审查计算单数或多数值家庭复发系数的现有方法,并为一般连续计量类别提出新的“预变校正”算法。我们把预测-校正法与稳定的兰克佐斯程序结合起来,用于一种新的混合算法,将复发系数计算成相当广泛的、既具有连续性又具有离散部分的计量。我们根据现有方法评估新的算法,以准确性和效率为标准。

0
下载
关闭预览

相关内容

不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
17+阅读 · 2020年9月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
0+阅读 · 2021年3月22日
Scalable computation for Bayesian hierarchical models
VIP会员
相关VIP内容
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
17+阅读 · 2020年9月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员