The context of this paper is the simulation of parameter-dependent partial differential equations (PDEs). When the aim is to solve such PDEs for a large number of parameter values, Reduced Basis Methods (RBM) are often used to reduce computational costs of a classical high fidelity code based on Finite Element Method (FEM), Finite Volume (FVM) or Spectral methods. The efficient implementation of most of these RBM requires to modify this high fidelity code, which cannot be done, for example in an industrial context if the high fidelity code is only accessible as a ''black-box'' solver. The Non Intrusive Reduced Basis method (NIRB) has been introduced in the context of finite elements as a good alternative to reduce the implementation costs of these parameter-dependent problems. The method is efficient in other contexts than the FEM one, like with finite volume schemes, which are more often used in an industrial environment. In this case, some adaptations need to be done as the degrees of freedom in FV methods have different meenings. At this time, error estimates have only been studied with FEM solvers. In this paper, we present a generalisation of the NIRB method to Finite Volume schemes and we show that estimates established for FEM solvers also hold in the FVM setting. We first prove our results for the hybrid-Mimetic Finite Difference method (hMFD), which is part the Hybrid Mixed Mimetic methods (HMM) family. Then, we explain how these results apply more generally to other FV schemes. Some of them are specified, such as the Two Point Flux Approximation (TPFA).


翻译:本文的上下文是基于参数的局部偏差方程式( PDEs) 的模拟。 当旨在为大量参数值解决这种 PDEs 时, 通常会使用 降低基础法( RBM ) 来降低基于精度元素法( FEM )、 精度量法( FVM ) 或光谱法的古典高忠诚代码的计算成本。 大多数这种成果管理制的有效实施都需要修改这种高忠诚度代码, 而在工业环境中, 无法做到这一点。 例如, 如果高忠诚度代码仅作为“ back-box” 解答器使用, 则在工业环境中, 高忠诚度代码无法做到。 当高忠诚度代码仅作为“ black-box” 解析器来解析时, 低侵犯性减少基准法( RBM ) 通常在限定要素值范围内, 将FEMM 方法的误算值值值值值值值值值用于 FEMM 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
专知会员服务
39+阅读 · 2020年9月6日
已删除
将门创投
5+阅读 · 2019年4月15日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月13日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年4月15日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员