This paper presents a novel fingerprinting methodology for the Intellectual Property protection of generative models. Prior solutions for discriminative models usually adopt adversarial examples as the fingerprints, which give anomalous inference behaviors and prediction results. Hence, these methods are not stealthy and can be easily recognized by the adversary. Our approach leverages the invisible backdoor technique to overcome the above limitation. Specifically, we design verification samples, whose model outputs look normal but can trigger a backdoor classifier to make abnormal predictions. We propose a new backdoor embedding approach with Unique-Triplet Loss and fine-grained categorization to enhance the effectiveness of our fingerprints. Extensive evaluations show that this solution can outperform other strategies with higher robustness, uniqueness and stealthiness for various GAN models.


翻译:本文为知识产权保护基因模型提供了一个新型的指纹鉴定方法。 歧视模式的先前解决方案通常采用对抗性范例作为指纹,这给出了异常的推断行为和预测结果。 因此,这些方法不是隐形的,很容易被对手认出。 我们的方法利用隐形的后门技术克服上述限制。 具体地说,我们设计了核查样本,其模型产出看起来正常,但可以触发后门分类器做出异常预测。 我们提出了一个新的后门嵌入方法,与Unique-Triplet Loss和精细分类相结合,以提高我们的指纹的有效性。 广泛的评估表明,这一解决方案可以超越其他战略,使各种GAN模型更加坚固、独特和隐秘。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
45+阅读 · 2020年10月31日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
4+阅读 · 2017年11月4日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
45+阅读 · 2020年10月31日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员