We construct six new explicit families of linear maximum sum-rank distance (MSRD) codes, each of which has the smallest field sizes among all known MSRD codes for some parameter regime. Using them and a previous result of the author, we provide two new explicit families of linear partial MDS (PMDS) codes with smaller field sizes than previous PMDS codes for some parameter regimes. Our approach is to characterize evaluation points that turn extended Moore matrices into the parity-check matrix of a linear MSRD code. We then produce such sequences from codes with good Hamming-metric parameters. The six new families of linear MSRD codes with smaller field sizes are obtained using MDS codes, Hamming codes, BCH codes and three Algebraic-Geometry codes. The MSRD codes based on Hamming codes, of minimum sum-rank distance $ 3 $, meet a recent bound by Byrne et al.


翻译:我们建造了6个新的直线最大和高度距离代码(MSRD)新直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线码(MSRD),每个新直线直线直径直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直径直线直线直线直线直线直线直径直线直线直线直线直径直线直线直线直线直线直线直线直线直线直线直线直径直线直径直径直线直线直线直线直线直线直线直线直线直线直径直径直线直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的直径直径直径直径直径直径直径直的直径直径直径直径直径直径直的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直

1
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
172+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Dynamic mean field programming
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月9日
Arxiv
0+阅读 · 2022年6月9日
Arxiv
0+阅读 · 2022年6月7日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
172+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员