项目名称: 铁磁材料与超导领域中的偏微分方程研究
项目编号: No.11201181
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 李敬娜
作者单位: 暨南大学
项目金额: 22万元
中文摘要: 本项目拟研究两个方面的问题:铁磁链方程与金兹堡-朗道方程.铁磁链方程是微磁学理论中的基本方程. 该模型由于涉及到材料、纳米物理学等诸多领域,一直是国际材料科学界和数学界研究的热点和难点.金兹堡-朗道方程同样也是物理学中被广泛研究的重要方程之一,它可以用来刻划包括非线性波、二级相变和超导在内的许多物理现象. 正是由于该方程的多重重要应用, 近年来,国内外数学家在这方面作了大量工作. 尽管如此,仍有许多问题,如描述薄膜导磁合金材料磁化运动的方程的适定性,该方程与 Maxwell 方程耦合的模型(即当磁化强度依赖于磁场时)的适定性,复杂区域中磁畴、磁畴壁和涡旋随时间的变化;在各种弱初值条件下的分数阶金兹堡-朗道方程的适定性和爆破解,以及它的非粘性极限方程等问题的研究还未解决.本项目拟在我们前期工作的基础上围绕上述问题展开深入研究.
中文关键词: 分数阶铁磁链方程;分数阶金兹堡-朗道方程;奇异抛物方程;非粘性极限;适定性
英文摘要: The project will study Landau-Lifshitz equation and Ginzburg-Landau equation. Landau-Lifshitz equation plays a fundamental role in the theory of Micromagnetics. The model draws extensive attention of mathematicians and scientists studying materials, due to its difficulty and involvement in material science and nanophysics. Ginzburg-Landau equation is also one of the essential equations in physics. This equation decribes a number of phenomena including nonlinear waves, second-order phase transitions and superconductivity. A lot of work contributed to the study of this equation was made by mathematicians at home and abroard because of its multiple applications. Nevertheless, there remain many problems unsolved, such as well-posedness of Landau-Lifshitz model describing evolution of magnetization in permalloy film, the model coupled with Maxwell equation (While the magnization depends on the magnetic field), evolution of domain, domain wall and votex in a complex region; well-posedness of fractional Ginzburg-Landau equation with weak initial data in various function spaces, the inviscid limit of the equation, and so on. All the above topics will be discussed further in the project on the basis of our previous work.
英文关键词: fractional Landau-Lifshitz equation;fractional Ginzburg-Landau equation;singular parabolic equation;inviscid limit;well-posedness